Association for Behavior Analysis International

The Association for Behavior Analysis International® (ABAI) is a nonprofit membership organization with the mission to contribute to the well-being of society by developing, enhancing, and supporting the growth and vitality of the science of behavior analysis through research, education, and practice.

Search
Cart Details:
  • Cart [] Item(s)
  • Total
Check Out
Continue Shopping

Category: 

Direction Dependence Analysis: Testing the Direction of Causation in Non-Experimental Person-Oriented Research

The item image was not found.

To ensure we offer contemporary continuing education opportunities, the CE credit associated with this video is no longer available, however, the video remains available for viewing.

 

In observational studies, at least three possible explanations exist for the association of two variables x and y: 1) x is the cause of y (i.e., a model of the form x → y), 2) y is the cause of x (y → x), or 3) an unmeasured confounder u is present (x ← u → y). Statistical methods that identify which of the three explanatory models fits best would be a useful adjunct to use of theory alone. The present talk introduces one such statistical method, Direction Dependence Analysis (DDA; Wiedermann & von Eye, 2015; Wiedermann & Li, 2018). DDA assesses the relative plausibility of the three explanatory models using higher moment information of the variables (i.e., skewness and kurtosis). DDA will be discussed in the context of person-oriented (non-experimental) research. Extending DDA principles to so-called (linear) vector autoregressive models (VAR) can be used to empirically evaluate causal theories of multivariate intraindividual development (e.g., which of two longitudinally observed variables is more likely to be the explanatory variable and which one is more likely to reflect the outcome). An illustrative example is provided from a study on the development of experienced mood and alcohol consumption behavior. Specifically, DDA is used to answer questions concerning the causal direction of effect of subjective mood and alcohol consumption behavior from a person-oriented perspective, i.e., whether individual changes in mood are the cause of changes in alcohol consumption (i.e., mood → alcohol reflecting the so-called “tension reduction hypothesis“; Conger, 1956; Young, Oei & Knight, 199) or whether alcohol consumption patterns cause changes in perceived mood (i.e., alcohol → mood reflecting the “hedonic motive hypothesis”; Gendolla, 2000). In the present sample, DDA supported the “tension-reduction hypothesis” suggesting that experienced mood is more likely to cause alcohol intake than vice versa. Data requirements of DDA for best-practice applications are discussed and software implementations in R and SPSS are provided.

 

 

NO PRICES

 

There is no pricing available for this product at this time. If you are signed in and there are no prices available, please contact the ABAI home office at (269) 492-9310 for assistance.

 

ValidatorError
  
Modifed by Eddie Soh
DONATE
{"isActive":false}